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The classical limit of quantum mechanical Coulomb scattering 

E G Peter Rowe 
Department of Mathematical Sciences, University of Durham, Durham DHl 3LE, UK 

Received 23 September 1985, in final form 1 April 1986 

Abstract. The exact solution of the Coulomb scattering problem in non-relativistic quantum 
mechanics has been known for many decades. Here its asymptotic form as h + 0, for 
constant energy and through all space, is discussed and shown to reproduce exactly the 
classical action surfaces and classical orbits for a statistical beam undergoing classical 
Coulomb scattering. 

1. Introduction 

The WKBJ approximation in quantum mechanics leads to fairly definite expectations 
about the classical ( fi + 0) limit of the quantum mechanical treatment of Coulomb 
scattering. Yet the limit seems not to have been worked out. 

If in the Schrodinger equation for a particle scattering in a potential V ,  
-(h2/2m)V2Y+ VY = E Y  

we substitute 

Y = R exp(iS/ f i )  

with real R and S, we get the conservation equation 

V [ R’VS] = 0 

and an equation which formally would reduce to the Hamilton-Jacobi equation in 
the limit f i  + 0: 

1 2 f i 2  V2R 
-(VS) +v---=E. 
2m 2m R 

Because R and S depend on h, the limit is not as 
suggests, but nonetheless the expectation is aroused 
as f i  + 0 will have the structure 

1/2 Y -. (Pclassical) eXP(iSclassicad h 1. 

simple as the formal argument 
that the asymptotic form for Y 

A rigorous discussion of such limits is given by Truman (1976) for the case when V 
is sufficiently smooth. 

The exact solution of the Schrodinger equation for Coulomb scattering is well 
known (Temple (1928), or, for a more extended description, Mott and Massey (1965)). 
The solution involves the confluent hypergeometric function F(  a, b, z ) ,  or, equivalently, 
Whittaker’s function MK,,,,( z). Such functions of three variables have many facets, 
and when the standard reference works were being written in the 1950s the theory of 
their asymptotic forms was far from complete. 

0305-4470/87/061419 + 13%02.50 @ 1987 IOP Publishing Ltd 1419 



1420 E G P Rowe 

The asymptotic form of Whittaker's function required for the Coulomb problem 
is discussed below and it results in the following asymptotic form for 9: 

q \ I x )  - ei'[(pin(x))"2 exp(isin(x)/h) -i(pou(x))1'2 e x ~ ( i  So"t(x)/h)I- 

This is the asymptotic form for all x (except on the positive 2 axis) as h + 0. It must 
be sharply distinguished from the commonly quoted asymptotic form for fixed h as 
IxI+co. The functions pin and pout are the classical densities for the incoming and 
outgoing statistical beams; Sin and So,, are the classical action functions for the orbits 
of the same statistical ensemble. The x -independent phase appears because of the 
from-our-point-of-view-unnatural standard phase in the usual solution. 

Classical limits help us to understand quantum mechanics better. Questions such 
as 'what physical reality does the Schrodinger equation describe?' are still actively 
debated. Does 9 describe the scattering of a single particle or an ensemble? In the 
h + 0 limit the classical reality to which the quantum mechanical treatment limits is a 
statistical ensemble of individual single-particle scattering orbits. The quantum 
mechanical probability becomes a statistical probability for an ensemble of classical 
orbits with the same initial velocity U& and uniform density on the initial plane z = -a. 
To put it no more strongly, the simplest interpretation of the quantum mechanical 
formalism when h f 0 which agrees with the required interpretation in the h + 0 limit 
is the statistical interpretation (Ballentine 1970). 

The actual details of the transition from quantum mechanics to classical mechanics 
are of interest too. For example, the classical description of the scattering of a 
(statistical) beam involves two sets of fields throughout space. Every point in space 
has one incoming orbit and one outgoing orbit (the 2 axis excepted) passing through 
it (see figure 1). Yet the quantum mechanical wavefunction q is single-valued in space. 
How are these two formalisms to be reconciled? 

A few words are said about the reconciliation of classical mechanics and quantum 
mechanics in the concluding section of this paper. In preparation for it and for the 
asymptotic form of quantum mechanics, the classical ensemble is described in the 
section immediately below. 

Figure 1. A family of orbits for attractive classical Coulomb scattering. All the particles 
have the same energy and initial velocity but differ in their impact parameters. The scattering 
charge is fixed at the centre. The figure is a superposition of two sheets of a surface on 
which the velocity field is single-valued. 
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It should be mentioned also that asymptotic forms for quantum mechanical scatter- 
ing wavefunctions have emerged in work originally directed towards understanding 
gravitational scattering on black holes (see DeWitt-Morette and Nelson 1984, DeWitt- 
Morette and Tian-Rong Zhang 1983, DeWitt-Morette et a1 1983, Nelson 1983, Handler 
and Matzner 1980). 

2. Classical Coulomb scattering 

The relevant formulae of non-relativistic classical Coulomb scattering can be derived 
very simply, so for completeness sake and to avoid ambiguity in the notation this will 
be done here. 

We first consider the orbit of a point charge q of mass m scattering against an 
infinitely heavy target charge Q fixed at the origin 0. In the first instance the whole 
process will be presumed to take place in the YZ plane. The projectile q enters at 
z = -a with impact parameter y = B (positive or negative) and initial velocity U = uok. 

The initial values of the conserved vectors 

L = x x m i  (2.1) 

C = x x L +  qQx/ r (2.2) 

Lo = muoBi (2.3) 

and 

are 

and 

CO = mu;( Bj - Ak)  

where 

A = qQ/  mu;. 

To be definite we consider only attractive scattering, so 

A < 0.  

The equation for the orbits can be deduced from 

x( t )  - CO = X( t )  - C (  t ) .  (2.7) 
This may be written in the form 

r 

after which integration with respect to t gives 

B ( y  - B )  = A ( r  + z). 

We may now consider the whole family of orbits for particles with the same initial 
velocity uok but whose initial positions z = -03, y = B have different impact parameters. 
These orbits are given by (2.8) for all real values of B. Each of the orbits crosses the 
positive Z axis (at z = - B 2 / 2 A )  and it is convenient to call the parts before the crossing 
incoming and the parts after the crossing outgoing. The family of orbits is illustrated 
in figure 1. 



1422 E G P Rowe 

Solving equation (2.8) for B gives the impact parameters of the two orbits, one 
incoming and one outgoing, that pass through a given point: 

B, = by{l* [ 1 -4A/(r - z)]”’}. (2.9) 

Since B, has the same sign as y, this case is incoming (recall that we are assuming 
A<O); since B- has the opposite sign from y, this case is outgoing. 

All the incoming orbits determine a velocity field uin throughout the plane (except 
the Z axis), and the outgoing orbits similarly determine another field uOut. In each 
case the velocity at a point is just the velocity of a particle whose orbit passes through 
the point. We can obtain the velocity for a particle on an orbit with impact parameter 
B from 

i x  CO= i x C(t). (2.10) 

This gives (writing U for x) 

uOA 1 
u=uok+--[(r+z)j-yk] .  

B r  
(2.11) 

We get uin by replacing B with the expression B, from (2.9), and we get uOut by 
replacing B with the expression B-. 

Writing 6 = r - z ,  V(=x^-k, we find 

uin = uok +  of[ 1 - ( 1  - 4A/5) ‘/’]V6 (2.12) 

and 

uo,, = uok + U,;[ 1 + ( 1  - 4A/ 6) ‘/’]V(. (2.13) 

The action S is a scalar field whose gradient gives the momentum field 

mv = VS. (2.14) 

From (2.12) and (2.13) we get Si, and So,, by simple integration. It is convenient to 
fix the arbitary constants so that both actions vanish at the origin, where z = 6 = 0. Then 

11 6 - 2A + [ 6(6 - 4A)]”’ 
-2A 

z+&$-$[[ (~-~A)] ’ / ’+A log( 

6 - 2A + [ &( 6 - 4A)]’/’ ( -2A ~ + ; 6 + ; [ 6 ( 6 - 4 A ) ] ’ / ~ - A  log 

(2.15) 

(2.16) 

Formulae (2.15) and (2.16) were derived by Gordon (1928) in a slightly different 
shape. Their asymptotic forms for 5 + CO are more familiar: 

Si, - muo[ z + A log( r - z)] 

So,, - muo[ r - A log( r - z)]. 

(2.17) 

(2.18) 

We can formulate the whole dynamical system in a simpler single-valued way by 
working on a two-sheeted Riemann-like surface consisting of two copies of the YZ 
plane each cut along the positive Z axis, an in-sheet and an out-sheet. Along the 
positive 2 axis, the y 2 0 edge of the in-sheet is smoothly joined to the y d 0 edge of 
the out-sheet, and vice versa. 
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On the two-sheeted surface there is just one orbit of the form (2.8) through each 
point, the impact parameter being given by (2.9) with B ,  on the in-sheet and B- on 
the out-sheet. The velocity fields (2.12) and (2.13) can be united to form a single-valued 
continuous vector field U on the surface. Similarly, Si, and So,, can be united to form 
a single-valued scalar field S on the surface. The orbits and the velocity field U are 
orthogonal at each point to the surfaces of constant action S. 

We can define action waves on the surface by 
S(x) - Et = 0 (2.19) 

where the energy E = $mu$ As time passes from -CO to +CO, the surfaces of constant 
action determined by (2.19) propagate like a wavefront which begins at z = -CO on the 
in-sheet as a distorted plane wave, and emerges on the out-sheet as a distorted spherical 
wave. These surfaces are illustrated in figure 2. 

Figure 2. Surfaces of constant action determine progressive action waves (see equation 
(2.19)). At t = -a they begin as distorted plane waves at the bottom of the figure. After 
encountering the scattering centre they emerge as distorted spherical waves. The two sheets 
of the surface on which the action is single-valued have been superposed. 

Using the family of orbits described above we can define a continuous time- 
independent flow of particles by a current density 

Here, a(x)  is the particle density in the plane (for the generalisation to 3-space, the 
symbol p will be used for the density). We define a(x)  by the initial condition 
a ( z  = -CO) = 1 and the requirement that j ( x )  be conserved, V j = 0. 

The current (2.20) describes a continuous statistical aggregation of particle motions, 
not a real beam. Each particle follows an orbit determined by its interaction with the 
scattering charge Q alone. 

To calculate a ( x )  we consider two nearby orbits with impact parameters B and 
B + 6B, 6B  > 0. At ( y  = B, z = -00) the number of particles flowing across a perpen- 
dicular line between the two orbits is SBuo per unit time since we are assuming 
a( z = -CO) = 1. To conserve j this must equal I SN I ua at any other point ( y ,  z )  on the 
B orbit, where 6N = Syj+ Szk is the perpendicular displacement to the second orbit, 
and the speed U is given by 

j ( x )  = a(x)u(x). (2.20) 

(energy conservation). 
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Using (2.1 1 )  for the direction of the B orbit, and (2.8) applied to both orbits, we find 

IBI a ( x )  = - 
Iy-2BI’ 

(2.21) 

By inserting one or the other of the expressions (2.9) for B, we get from (2.21) the 
density on both the in-sheet and the out-sheet. The density given by (2.21) is finite 
everywhere, a fact which is obvious from figure 1 .  

As a last step in specifying the classical Coulomb system to which the quantum 
mechanical treatment limits, we rotate everything about the 2 axis, that is, we 
impose axial symmetry consistent with the above description in the YZ plane. 
Equations (2.12)-(2.19) require no change to be interpreted in 3-space. The two-sheeted 
surface on which U and S are single-valued becomes a pair of copies of three- 
dimensional space communicating through the positive 2 axis. 

Equations (2.20) and (2.21) require slight alteration. In place of (2.20), 

A x )  = P ( X ) O ( X )  (2.22) 

and p is determined by particle conservation and the initial condition p ( z  = -CO) = 1. 
Instead of the perpendicular lines in the calculation of m(x) we must work with two 
annuli of areas 27r I B 1 SB and 27r 1 y I I SN 1 .  The argument is otherwise the same and 
we obtain 

(2.23) 

This density diverges on the positive Z axis because every orbit in the whole 3-space 
crosses it. 

Substituting from (2.9) in (2.23) we obtain the densities for the in-space and the 
out-space: 

1 
( 1  -4A/5)”2 

p i , ( ~ )  =f[ ( l  -4A/5)”2+ 112 (2.24) 

(2.25) 

As 5+ CO, the asymptotic forms of these densities are 

P i n -  1 (2.26) 

(2.27) 

The asymptotic form for pout is equivalent to Rutherford’s formula for the Coulomb 
scattering cross section. 

We shall see in the next section that the physical system to which the quantum 
mechanical version of Coulomb scattering tends as h + 0 is the time-independent 
statistical ensemble of single-particle scattering motions described above. Its density 
is given through all space by pin and pout in equations (2.24) and (2.25); its velocity 
field is given by uin and uout of (2.12) and (2.13). The velocity fields are perpendicular 
to the surfaces of constant action Sin and Sou, of equations (2.15) and (2.16). 
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3. Classical limit of quantum mechanical Coulomb scattering 

The Schrodinger equation for the scattering problem of the previous section is 

qQ _-  f i 2  V 2 9 + - 9 = E 9 = + m u i 9  
2m r (3.1) 

For the case of an incoming (distorted) plane wave representing particles travelling 
initially with velocity U&, the exact solution 9 is known. It is described in most books 
on quantum mechanics, for example, Messiah (1961). 

The wavefunction is usually normalised and standardised with reference to its 
asymptotic form for large t= r - z. For scattering on a short-range potential this 
asymptotic form, as I x 1 + 03, would be just 

exp(ikz)+(f/r)  exp(ikr) (3.2) 

where 

k = muo/ f i . (3.3) 

The otherwise arbitrary constant in V is chosen to make its asymptotic form, as 5 -$ M, 

correspond as closely as possible to (3.2). 
Our present interest is in a completely different asymptotic form: the form of 1I' 

for any finite x, constant q, Q, m, uo, as f i  + 0 (or, equivalently, k + 03). We will call 
this the classical limit, even though it is not a limit function that is obtained (even 
when qQ = 0 the wavefunction eikz has no limit function as k + CO). 

Since 9 is known exactly, all that is needed is the asymptotic form of this known 
function as k + 03. But the required case does not appear in the standard references, 
so the work below is directed towards finding it a6 initio. This will be done in the 
manner of Erdtlyi and Swanson (1957) from the differential equation itself rather than 
from an integral representation of the solution (see also Olver 1974, Skovgaard 1966). 

(3.4) 

With the notation (2.5) and (3.3), equation (3.1) may be rewritten 

V2Y + k2[ 1 - 2A/ r ] 9  = 0. 

The known solution has the form 

V = C(k)  eik'f(t) (3.5) 
where C( k) is a normalisation-standardisation constant (it will be brought in explicitly 
below). 

Substituting (3.5) in (3.4) shows that 

tf"(5) + (1 - ikf l f ' ( t )  - k2Af( t )  = 0. (3.6) 
The only acceptable solution is the standard one given in terms of the confluent 
hypergeometric function (see, for example, Erdilyi 1953) 

(3.7) f(6) = F(-ikA, 1, ie). 
The function F(a ,  6, z) is entire; near z = 0 it behaves like 

F(a, b, z ) =  l + ( a / b ) z + .  , , 

and it satisfies 

zF"+ ( 6  - z)F ' -  aF  = 0. 
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Once f(5) has been specified exactly it allows us to quote the conventional value 

(3.10) 

(see Messiah 1961). Its asymptotic form for large, real, positive k and real A < 0 can 
easily be found from Stirling’s formula: 

of the constant C ( k )  
C ( k )  = r( 1 +ikA) exp(-&rkA) 

C ( k )  - (2~1kAI)’” exp(-i~r/4) exp[ikA(loglkAl- l)] .  (3.11) 

The problem is to find the asymptotic form of (3.7). When using the differential 
equation method, the most efficient strategy seems to be to eliminate the first derivative. 
Introducing Whittaker’s function accomplishes this: 

M,,,(z) = 2’’’ e-*”F(u, 1, z) (3.12) 

where K = f - U in general, and for our case 

K =i+ikA. 

The differential equation for M, , (z )  is 

(3.13) 

(3.14) 

and its behaviour near z = 0 is given by 

M,,o= Z’”(1 - K Z + .  . .). (3.15) 

From (3.7) and (3.12), 

f ( 5 )  = (ik5)-”2 exp(i@/2)g(5) (3.16) 

where 

s(0 = M,O(ikf) (3.17) 
with K given by (3.13). From (3.14), the differential equation satisfied by g(5) is 

(3.18) 

From (3.15), its behaviour near 5 = 0 is 

g ( 5 ) = ( i @ ) ” ’ ( l - K i ~ + . .  .). (3.19) 

We need the asymptotic form, as k + a ,  of the solution of (3.18) for real 5 3 0  whose 
behaviour near 6 = 0 is given by (3.19). 

As a final step to neaten up (3.18) we put 

and note that 

D,=Re D>O Im D>O. 

Equation (3.18) now becomes 

(3.20) 

(3.21) 
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This equation is singular at (=O, but the coefficient of k 2  does not vanish on the 
positive 6 axis (or near it) so there are no transition points on this axis. We can then 
hope to find a uniform approximation for the whole positive axis. ErdClyi and Swanson 
(1957) treated an equation like (3.21) but with real D. Although Im D - 0  as k+w,  
its effect is nonetheless very great. 

We follow the procedure of ErdClyi and Swanson without attempting to maintain 
their rigour. 

The main idea is to compare (3.21) with a differential equation related to Bessel's 
equation. Suppose y(z) satisfies Bessel's equation of order p: 

(3.22) y"(z) + (l/z)y'(z) + (1 -p2/z2)y(z) = 0. 

With $(6) to be chosen presently, we put 

U ( & )  = (+/*')1'2Y(k$)* (3.23) 

Then U(,$) satisfies 

(3.24) 

To increase the similarity between (3.21) and (3.24) we choose 

+'2 = a (  1 + D / ( ) .  (3.25) 

With +(O) = 0, we then have 

2+(0 = lo' d6(1+ D / 6 ) ' / 2  

(26 + D + 2[5(5+ D)l'/' 
D 

= [ 6( 6 + D ) ]  1 / 2  + i D  log (3.26) 

in which the square roots with positive real part are intended, and the principal value 
of the log. Using the behaviour of i,b near 6 = 0, 

* (O  - +Y6) -@/o I/* etc (3.27) 

one can check that the choice p = 0 in (3.24) means its 6-' singularity has the same 
coefficient as the one in (3.21). 

Near z = 0, Jo(z) - 1; so, having chosen p = 0, and bearing in mind (3.27), if we 
use the solution of Bessel's equation which is regular at the origin and whose normalisa- 
tion is given by 

y(z) = (ik/2)''2~o(z) (3.28) 

then U(&) determined by (3.23) will have the same behaviour near 6 = 0 as g ( 6 )  exhibits 
in (3.19). 

We have been led finally to 

(3.29) 

a function which has the same behaviour near 6 = 0 as g (  6 )  and which satisfies a 
differential equation very similar to (3.21). We omit a pure mathematical proof that 
U (  5 )  gives the asymptotic form of g (  6 )  as k + 03. In the similar cases that they deal 
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with, ErdClyi and Swanson (1957) use a Green function scheme of successive approxi- 
mations to incorporate the differences between the two differential equations and they 
find that the asymptotic form of U gives the asymptotic form of g :  

g ( 5 )  - U ( 5 )  as k + m .  (3.30) 
The asymptotic form of the Bessel function Jo( z)  as 1 z I + CO is (ErdClyi 1953) 

so, from (3.29) and (3.30), for 5>0, as k + m ,  

(3.31) 

(3.32) 

We need the real and imaginary parts of k+ for use in (3.32). From (3.20) and with 
a slightly more elaborate notation in (3.26), 

where 

6 - 2A + [ 5( 5 - 4A)]’/2 ( -2A 
$o= ![ 5( 5 - 4A)]’l2 - A  log 

Substituting (3.33) in (3.32) gives 

+i[(l -4A/5)’ /2+ 11 exp(-ikGo)} 

(3.33) 

(3.34) 

(3.35) 

and then bringing in the extra factors from (3.16) produces 

This is the required asymptotic form for the function in (3.7). 

write the asymptotic form of f(5) more briefly: 
Referring to the expressions for the classical densities in (2.24) and (2.25), we may 
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At last, from (3.5) and (3.11), we get the asymptotic form for the wavefunction 

q -exp[ikA(logI kA) - 1)]{(pin)”2 exp[ik(z+ 5/2- $0)1 
-i(pouOli2 exp[ik(z+ t / 2 +  +O)I). (3.38) 

Comparing the exponentials in (3.38) with (2.15) and (2.16), we see that 

‘P-exp[ikA(loglkAI- l)][(pin)’i2 exp(i Sin/h)- i (pout)”2 exp(i S,,,/h)]. (3.39) 

This is the final expression for the asymptotic form, as k +CO ( h  + 0), for the Coulomb 
wavefunction. It applies through the whole of space, except the positive 2 axis (where 
pin and pout diverge). 

The ‘peculiar’ phase factor in (3.39) arises because the conventional standardisation 
(3.10) was chosen to make the 6 + 00 asymptotic form of the in-term as neat as possible. 
If we look again at the ( + C O  asymptotic forms of Sin/h and Sout/h but carry the 
expansion one term further than in (2.17) and (2.18) we find 

(3.40) 

- k[r+A(-1 -log (+log(Al)].  (3.41) 

Then, from (3.39) we can write the asymptotic form as ,$+CO of the asymptotic 

S i n /  h c s ~ m ,  k[z + A(1+ log t-logl A ) ) I  

S o u t / R  (g-.m) 

form as k + o o  of the wavefunction. We get (using (2.27) and (2.26) also) 

) VI - (exp[ik(z+AIog&)]---exp[2ikA(log1kAI-l)] il AI exp[ik(r-Alog kr)] . 
k-m 5 s--= 

(3.42) 

This is the usually quoted 5 + 00 asymptotic form of the Coulomb wavefunction but 
with the factor 

T(l+ikA)/T(l  -ikA) 

replaced by its k + a  form (-i) exp[2ikA(logl kA1-l)], 

4. Conclusions 

From the asymptotic ( h  + 0) form (3.39) one gets the asymptotic form of the quantum 
mechanical position probability density 

1 ( *  - Pin + pout + 2(pinpout) I i 2  sin[(Sout - sin)/ h] 

If this is interpreted as a distribution, so that it appears only under an integral sign 
with a smooth test function, then in the limit h + 0 it is equivalent to 

(4.1) lim IY (* = pin + pout. 
h+O 

The quantum mechanical probability density limits to the sum of the classical in- and 
out-densities for the statistical flow described in 0 2. 

In time-independent quantum mechanical scattering theory a rather artificial argu- 
ment is used to separate the two pieces corresponding to pin and pout, and to justify 
the neglect of the interference term. 



1430 E G P Rowe 

With the same understanding that it is to be interpreted as a distribution, the 
quantum mechanical current density has the limit 

-iV*iiVV VS,, VS,,, 
Pout = VinPin + U o u t ~ o u t .  lim - Pin+- 

-- 
h - 0  m m m (4.2) 

At each point in space this is the total current for the classical flow. 
In order to extract out of the quantum mechanical asymptotic form something 

corresponding to time development in the classical flow, one may show how the action 
waves (2.19) of the classical theory emerge from the quantum mechanical theory. The 
action waves do not, of course, travel with the speed of the particles in their orbits 
but they do display a time ordering for the whole system of orbits and in particular 
this allows a distinction to be made between the velocity uin and uOut at any point in space. 

The asymptotic form for the time-dependent wavefunction for a scattering energy 
eigenstate is given by 

exp(-i+)*(x, t )  - {(pin)’” exp[i(Si,- E t ) l h l  -i(poUt)l’* exp[i(S,,,- E t ) / f i ] } .  (4.3) 

(The phase factor, which is constant in spacetime but variable with respect to ti, has 
been put on the left to simplify the structure on the right.) 

The relation (4.3) is an asymptotic form of a function of h, as h + 0, with the 
spacetime point a parameter. The behaviour of the right-hand side, as a function of 
tr but for fixed x, t, is completely different when one or other exponent vanishes (they 
can only vanish together on the Z axis) from the general behaviour when neither 
vanishes. Hence the set of points in spacetime for which either 

Sin( x) - Et = 0 

Sout(x) - Et = 0 

(4.4) 

(4.5) 

or 

can be determined. For fixed t the spatial points satisfying either of these equations 
give the action surfaces illustrated in figure 2 and represented by equation (2.19). For 
t < O  only (4.4) can be satisfied, but for t > O  both equations can be satisfied-at 
differential spatial points. One can see clearly the different character of the cases t < 0 
and t > 0 in figure 2, where the transitional curve, Si, = 0, exhibits a cusp. If the curves 
for t > O  are described as seagulls, the wings are formed from the points satisfying 
(4.4) and the bodies by (4.5). The sections meet on the 2 axis and the union is a 
representation of (2.19). 

From the action waves the complete set of particle orbits, which are everywhere 
orthogonal to the surfaces of constant action, can be recovered. 

Although the time-independent quantum mechanical wavefunction is single-valued 
in space, the action wave (2.19), derived from it by the above procedure meets every 
spatial point twice. It is this fact that provides the reconciliation between single-valued 
quantum mechanics and the two velocity fields of classical mechanics. 
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